Nomer dan Aljabra

Nomor dan aljabar

Dalam konteks yang mengharuskan mereka untuk memecahkan masalah atau situasi Model, siswa akan dapat:

menerapkan menghitung-semua strategi
melanjutkan pola sekuensial dan pola nomor berdasarkan orang.
Selama tahun ajaran ini, ‘number’ harus menjadi fokus dari 60-80 persen dari waktu mengajar matematika.

Contoh 1

Nine teddies.
Bayangkan Anda memiliki 4 teddies. Anda mendapatkan 5 teddies lagi.

Berapa banyak teddies yang Anda miliki sekarang?

Siswa mendapat jawaban yang benar dari 9 teddies dengan menghitung semua benda: 1, 2, 3, 4, 5, 6, 7, 8, 9. Mereka dapat melakukannya dengan pencitraan teddies, sebaiknya, atau dengan menggunakan bahan tersubstitusi (misalnya jari tangan atau counter). Jika mereka berhasil menggunakan strategi yang lebih canggih, seperti menghitung pada atau dua kali lipat, mereka melebihi harapan.

Contoh 2

Eight strawberries.
Bayangkan Anda memiliki 8 stroberi.

Anda makan 3. Berapa banyak stroberi yang Anda miliki?

Siswa mendapat jawaban yang benar dari 5 stroberi dengan menghitung semua benda (1, 2, 3, 4, 5, 6, 7, 8) dan kemudian menghitung kembali (7, 6, 5). Mereka dapat melakukannya dengan pencitraan stroberi, sebaiknya, atau dengan menggunakan bahan tersubstitusi (misalnya jari tangan atau counter). Jika mereka berhasil menggunakan strategi yang lebih canggih, seperti segera menghitung kembali dari 8 atau menggunakan fakta yang diketahui, mereka melebihi harapan.

Contoh 3

Three kete.
Berikut adalah 3 kete. Ada 3 Kumara di setiap kete.

Berapa banyak Kumara ada sama sekali?

Siswa mendapat jawaban yang benar dari 9 kumara dengan menghitung semua benda: 1, 2, 3, 4, 5, 6, 7, 8, 9. Mereka dapat melakukannya dengan pencitraan kumara, sebaiknya, atau dengan menggunakan bahan tersubstitusi (misalnya jari tangan atau counter). Jika mereka berhasil menggunakan strategi yang lebih canggih, seperti loncat-menghitung (3, 6, 9), mereka melebihi harapan.

Contoh 4

Farm animals.

Membangun pola di bawah ini dengan kartu hewan Anda, satu binatang pada satu waktu, di depan siswa.
Hewan yang datang berikutnya dalam pola? Bagaimana Anda tahu?

Siswa mengidentifikasi hewan yang datang berikutnya (babi) dengan memperhatikan posisi relatif dalam urutan mengulangi: sapi, babi, domba.

 

 

_________________________________________________________________________________________________________________________________________________________________________________

 

Number and algebra

In contexts that require them to solve problems or model situations, students will be able to:

  • apply counting-all strategies
  • continue sequential patterns and number patterns based on ones.

During this school year, ‘number’ should be the focus of 60–80 percent of mathematics teaching time.

Example 1

Nine teddies.

Imagine you have 4 teddies. You get 5 more teddies.

How many teddies do you have now?

The student gets the correct answer of 9 teddies by counting all of the objects: 1, 2, 3, 4, 5, 6, 7, 8, 9. They may do so by imaging the teddies, preferably, or by using substituted materials (for example fingers or counters). If they successfully use a more sophisticated strategy, such as counting on or doubling, they exceed the expectation.

Example 2

Eight strawberries.

Imagine you have 8 strawberries.

You eat 3. How many strawberries do you have left?

The student gets the correct answer of 5 strawberries by counting all the objects (1, 2, 3, 4, 5, 6, 7, 8) and then counting back (7, 6, 5). They may do so by imaging the strawberries, preferably, or by using substituted materials (for example fingers or counters). If they successfully use a more sophisticated strategy, such as immediately counting back from 8 or using known facts, they exceed the expectation.

Example 3

Three kete.

Here are 3 kete. There are 3 kūmara in each kete.

How many kūmara are there altogether?

The student gets the correct answer of 9 kūmara by counting all of the objects: 1, 2, 3, 4, 5, 6, 7, 8, 9. They may do so by imaging the kūmara, preferably, or by using substituted materials (for example fingers or counters). If they successfully use a more sophisticated strategy, such as skip-counting (3, 6, 9), they exceed the expectation.

Example 4

Build up the pattern below with your animal cards, one animal at a time, in front of the student.

Farm animals.

Which animal comes next in the pattern? How do you know?

The student identifies which animal comes next (the pig) by attending to its relative position in the repeating sequence: cow, pig, sheep.

Return to top

Geometry and measurement graphic.

Geometry and measurement

In contexts that require them to solve problems or model situations, students will be able to:

  • compare the lengths, areas, volumes or capacities, and weights of objects directly
  • sort objects and shapes by a single feature and describe the feature, using everyday language
  • represent reflections and translations by creating patterns
  • describe personal locations and give directions, using everyday language.

Example 5

Glass jug and 3 containers.

Provide water in an ungraduated jug or bottle and 3 containers that are similar in capacity.

Use water to find out which container holds the most.

The student pours water directly from one container to another to find out which holds the most.

Example 6

Attribute blocks.

Provide the student with a set of attribute blocks.

Sort the blocks into families.

What is the same about the blocks in each family?

The student sorts the blocks by a feature of their choice and explains their sorting. The feature may be colour, size, shape, thickness, or some other characteristic, such as number of sides, symmetry, ‘pointiness’, or ’roundness’.

Example 7

Sit with the student at their desk in the classroom.

Drawing of kids in class.

Imagine I am standing at the door. I need to get to where Rawiri sits. Tell me how to get to his seat.

The student gives clear directions that lead you to Rawiri’s seat. They may tell you to move backwards or forwards and to turn right or left. If the student specifies distances in steps or metres or uses half- or quarter-turns, they exceed the expectation.

Return to top

Statistics graphic.

Statistics

In contexts that require them to solve problems or model situations, students will be able to:

  • investigate questions by using the statistical enquiry cycle (with support), gathering, displaying, and/or counting category data.

Example 8

Jungle animals.

Provide the student with the animal cards shown, randomly arranged.

Arrange the cards so that someone else can see how many of each animal there are at the zoo. How many zebras are there? Which animal is there most of?

The student sorts the animals into categories and displays the number of animals in each category, using a set grouping or pictograph as above. They correctly answer that there are 4 zebras and more monkeys than any other animal.

%d bloggers like this: